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A B S T R A C T

Hyperspectral image (HSI) denoising is an essential preprocessing step for improving HSI applications.
Recently, subspace-based nonlocal low-rank approximation (SNLR) methods have shown their superiority.
However, most of these methods ignore such a potentially important phenomenon, that is, real HSIs contain
many high signal-to-noise ratio bands (HSNRBs), and thus result in the underutilization of information. In this
paper, we propose a new method called Subspace-based Guided Nonlocal Low-Rank Approximation (SGNLR)
for HSI denoising. Our method takes advantage of the abundant spatial information in the representation
coefficients of HSNRBs to improve denoising performances. Specifically, we employ low-rank subspace
representation to exploit the global spectral correlation of HSI and transform the HSI denoising task as
the estimation of spectral basis and spatial representation coefficients (SRCs). Motivated by the consistency
of coefficient features between the whole HSI and HSNRBs, we employ the SRCs of HSNRBs to guide the
restoration of target coefficients. To restore the SRCs accurately, we design a powerful nonlocal low-rank
approximation that takes into account the nonlocal self-similarity (NSS) of SRCs. An efficient algorithm based
on alternating minimization is developed to optimize the proposed model. Extensive experiments on both
simulated and real-world data demonstrate the outperformance of our method.
1. Introduction

Hyperspectral image (HSI) is acquired by hyperspectral imaging
sensors that are able to cover the wavelength region in the range of
0.4 to 2.5 μm. With abundant available spatial and spectral information,
HSI has the potential to be superior in applications such as environmen-
tal monitoring [1], precision agriculture [2], military surveillance [3]
and face recognition [4]. However, due to the instrumental noise, HSI is
inescapably degraded by noise, which seriously destroys the data qual-
ity and limits the performance of subsequent applications. Therefore,
HSI denoising has been regarded as an essential preprocessing step to
improve image quality and downstream applications.

The existing HSI denoising methods can be roughly divided into two
broad categories: deep learning-based approaches and model-based ap-
proaches [5]. Deep learning-based approaches design deep networks to
learn the end-to-end mapping functions from the noisy HSI to the clean
HSI [6–9]. This kind of method can deal with fast testing and achieve
impressive restoration results, but requiring sufficient paired training
data, training time, and calculation power. However, these networks
suffer from the bottleneck of generalization ability in complicated noise
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scenarios that are not included in the training data. Moreover, plenty of
training data in the HSI community are hard to collect. On the contrary,
model-based methods regard the task of HSI denoising as an ill-posed
problem and introduce statistical priors such as smoothness [10–12],
low-rank [13–17], and nonlocal self-similarity (NSS) [18–25], thus,
improve good performance of deep learning-based in generalization
and interpretable. However, most model-based approaches are dedi-
cated to exploiting the complicated physical characteristics of HSI for
boosting denoising performance, making the model complex and a
heavy computational burden. Therefore, it should be a bottleneck for
model-based methods to weaken the complex prior combination on
this task, while improving their satisfactory restoration performance
simultaneously. Moreover, most of them treat HSI as full-band noisy
data and ignore an inconspicuous, but real phenomenon that there are
many high signal-to-noise ratio bands (HSNRBs) in real HSI, which
should be fully utilized to guide the denoising performance.

To handle the above bottlenecks, this article attempts to provide
new insight into HSI denoising. Firstly, through empirical observation
of real HSIs, we have found that not all bands of a captured HSI are
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Fig. 1. The illustration of real-word HSIs with respect to different bands. Top: Indian Pines dataset. Bottom: GF-5 Baoqing dataset.
corrupted with noise, and there are many HSNRBs. Fig. 1 presents the
illustration of different bands in the two real HSIs. Obviously, the levels
of noise degradation are different in each band, and there are high-
quality bands. This observation motivates us to investigate whether
these HSNRBs can guide subsequent denoising. Secondly, it is known
that the framework of subspace-based nonlocal low-rank approximation
(SNLR) in model-based approaches has been extensively employed for
HSI denoising with state-of-the-art results [23]. This kind of method
first projects the original high-dimensional HSI onto a low-dimensional
spectral subspace and then denoises the spatial representation coeffi-
cients (SRCs) via NSS methods. We extract two SRCs of the real GF-5
Baoqing dataset shown in Fig. 2(a)–(b). It is found that the SRCs are
seriously degraded by noise, and the spatial information is largely
invisible. Although spatial-based methods such as NSS can achieve
effective SRCs restoration, many of them are heavily influenced by
the type of noise, which reduces the accuracy of group matching and
low-rank approximation. Thirdly, we can see that the SRCs of HSNRBs
extracted from the GF-5 Baoqing dataset, as shown in Fig. 2(c), contain
clear spatial information. Since SRCs inherit the spatial structure of
the original HSI, and the spatial structure of HSNRBs is also consistent
with those of the whole image, thus the SRCs of the whole HSI and
those of HSNRBs also have the same spatial structure. This observation
inspires us to investigate whether we can introduce this complementary
information to guide the exact SRCs restoration of the entire noisy
dataset. In conclusion, real noisy HSIs contain a significant number of
HSNRBs, and making full use of this information without increasing the
model complexity is a key factor in improving the performance of HSI
denoising.

Based on the above observations, a novel method called Subspace-
based Guided Nonlocal Low-Rank approximation (SGNLR) is proposed
for HSI denoising. Unlike most model-based approaches that focus on
utilizing complex priors of HSI, the SGNLR method proposes a new
perspective by incorporating guidance information extracted from the
noisy HSI. This approach does not increase the model complexity or
its computational cost. By leveraging the guidance information, we
integrate it into the powerful SNLR framework, which can effectively
2

preserve the spectral signature while better restoring the spatial struc-
ture. The flowchart of the proposed method is illustrated in Fig. 3. The
main contributions of this paper are summarized as follows:

(1) We propose a novel perspective in the field of HSI denoising
by incorporating guidance information from the noisy HSI. To the best
of our knowledge, this is the first attempt to incorporate guidance
information into nonlocal-based methods to improve their performance
in this task.

(2) Based on the observation that the spatial structure of the
HSNRBs exhibits similarities with the entire HSI, we incorporate this
auxiliary information into an SNLR framework to guide the precise
restoration of SRCs for the whole HSI.

(3) An efficient alternating minimization algorithm is designed to
solve the proposed guided model. Experimental results on both sim-
ulated and real HSI datasets demonstrate that the proposed SGNLR
method outperforms state-of-the-art nonlocal-based methods in terms
of denoising performance.

The remainder of this paper is organized as follows. Section 2
briefly reviews the related work on HSI denoising. Some notations and
problem formulation are presented in Section 3. Section 4 introduces
the proposed SGNLR and its optimization procedure. A series of exper-
iments with both simulated, real data and discussions are reported in
Section 5. Finally, Section 6 concludes this paper.

2. Related work

This section briefly reviews the existing HSI denoising methods,
which can be grouped into two categories: deep learning-based ap-
proaches and model-based approaches.

2.1. Deep learning-based approaches

Due to the powerful complex and high-representative feature learn-
ing capability of deep neural networks, deep learning-based approaches
[26–30] have been widely applied in HSI processing. This kind of
method implicitly learns the image prior from the paired training
datasets and then performs a nonlinear end-to-end mapping between



Signal Processing 215 (2024) 109266Y. Chen et al.
Fig. 2. The SRCs of the real GF-5 Baoqing dataset on the whole dataset and HSNRBs. (a)–(b) Two SRCs of the whole dataset. (c) One SRC of HSNRBs.
Fig. 3. Overall flowchart of the proposed SGNLR. First, low-rank subspace factorization is designed to capture the spectral correlation and reduce the computation complexity,
which represents the HSI as the spectral basis and SRCs. Second, noise estimation is introduced to obtain the guided information (i.e., HSNRBs) from the noisy HSI. Third, the
powerful NSS method is employed to denoise the spatial coefficients by incorporating the guided coefficients. Finally, iterative refinement is implemented to achieve the final
result.
the noisy HSI and the clean HSI. Benefit from the effectiveness of con-
volutional neural networks (CNN) in natural image denoising, Chang
et al. [7] first designed the CNN to learn a succession of 2-D convolu-
tions for exploring the spatial structures of HSIs. To explore the spatial–
spectral feature simultaneously, CNN-based derivatization methods
were proposed for HSI denoising, such as spatial–spectral deep residual
network [6] and spatial–spectral gradient network [31], Since 2-D
convolution-based CNNs cannot take full advantage of strong spectral
correlation, a mount of works designed 3-D convolution to exploit
3

spatial–spectral correlations for HSI denoising, such as 3D U-net [8],
3-D-ADNet [32], and QRNN3D [26].

Although these CNN-based methods can obtain satisfactory results
via training nonlinear mapping, the interpretability is relatively poor.
To enhance the interpretability of CNN-based approaches for HSI de-
noising, T3SC [27] designed a spatial–spectral network by unraveling
the iterative algorithm of a sparse coding model. SMDS-Net [33] pro-
posed an end-to-end network by unfolding a subspace-based sparse
model to simultaneously capture the spectral–spatial correlation and
spatial sparsity priors. Give sufficient training data for different noise
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types, deep learning-based methods are able to achieve better denois-
ing results than the model-based counterparts. However, due to the
complexity of noise distributions in real data, the trained networks
may not be employed in others, while re-training a new network from
scratch is impossible since the paired datasets are difficult to construct.
In summary, these obstacles may limit the generalizability of deep
learning-based methods.

2.2. Model-based approaches

Model-based approaches regard the task of HSI denoising as an
ill-posed problem and develop an optimization model depicting the
statistical priors of desired clean HSI. Three kinds of prior knowledge
are generally employed in HSI denoising, including local smoothness,
low-rank, and NSS.

The local smoothness is based on the fact that HSI has the sparse
property under a specific dictionary or transform domain [34,35]. As
the adjacent spatial areas and spectral bands have similar pixel values,
total variation (TV) regularization is a powerful tool to characterize the
local smoothness of HSI in the gradient domain and is widely employed
for HSI denoising [10,16,36]. Moreover, the improved TV approaches
are proposed to promote the performance of TV regularization for HSI
denoising, such as enhanced 3D-TV regularization [37], spectral group
TV regularization [38], and three-dimensional correlated total variation
regularization [39]. The local smoothness prior is effective to preserve
the spatial structure, but the spectral correlation is ignored.

Notice that the spectral correlation is induced by the fact that the
spectral features of HSI are in a low-dimensional subspace. By unfolding
the 3-D HSI into a 2-D matrix, matrix-based low-rank methods such
nuclear norm minimization [13], non-convex rank approximation [14,
15], and matrix factorization [12,34,40] are useful regularizations to
capture the spectral correlation of HSI. Since the unfolding operator
may destroy the original 3-D structure of HSI, tensor-based low-rank
methods have been introduced to preserve the spatial–spectral correla-
tion, including Tucker rank [41], CP rank [42,43], tubal rank [44,45],
and tensor ring rank [46]. By integrating traditional/improved TV
regularizations into the low-rank matrix/tensor framework priors, a
large number of methods are proposed for HSI denoising, such as
LRTV [11], LLRSSTV [47], LRTDTV [48]. Low-rank constraints on the
spatial–spectral dimension can help restore the global information of
HSI but still neglects an important intrinsic characteristic of NSS.

The NSS represents that they contain many similar full-band patches
at different locations in the whole HSI. Representative examples of
such methods in HSI denoising include tensor dictionary learning
(TDL) [19], unidirectional low-rank tensor recovery (LLRT) [20], and
Kronecker-basis-representation based tensor sparsity (KBR) [21]. The
computational time of LLRT and KBR is relatively long due to the
high dimensionality of the spectral band. To reduce the computational
complexity, another improved method first projects the original high-
dimensional HSI onto a low-dimensional spectral subspace and then
denoises the SRCs via NSS methods [22,23,49,50]. For example, the fast
hyperspectral denoising method (FastHyDe) [22] exploited the NSS of
representation coefficients via block-matching and 3D filtering (BM3D),
and nonlocal meets global method (NGmeet) [23] adopted weighted
nuclear norm minimization (WNNM) to restore the similar full band
patches. Although a satisfactory denoising result can be achieved by
employing NSS methods, most of them treat HSI as full-band noisy
data and ignore an inconspicuous but real phenomenon that there are
many HSNRBs in real HSI, which should be fully utilized to guide the
denoising performance.

3. Notations and problem formulation

3.1. Notations

In this article, lowercase letters or capital letters, lowercase bold
letters, capitalized boldface letters, and capitalized calligraphic letters
4

are employed to represent scalars (e.g., 𝑘 and 𝐾), vectors (e.g., 𝐱),
matrices (e.g., 𝐗), and tensors (e.g., ), respectively. For a 𝑁-order
tensor  ∈ R𝐼1×𝐼2⋯×𝐼𝑁 , the mode-𝑛 unfolding of  is denoted by 𝐗(𝑛) ∈
R𝐼𝑛×𝐼1⋯𝐼𝑛−1𝐼𝑛+1⋯𝐼𝑁 . In contrast, we define fold𝑛(𝐗(𝑛)) =  , where fold𝑛 is
the inverse operator of unfolding operator. The Frobenius norm of  ∈
R𝐼1×𝐼2⋯×𝐼𝑁 is defined by ‖‖𝐹 = (

∑

𝑖1
∑

𝑖2
⋯

∑

𝑖𝑁
𝑥2𝑖1𝑖2⋯𝑖𝑁

)
1
2 . Moreover,

the mode-𝑛 product of a tensor  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 and a matrix 𝐀 ∈
R𝐽𝑛×𝐼𝑛 is defined as  =  ×𝑛 𝐀, where  ∈ R𝐼1×⋯×𝐼𝑛−1×𝐽𝑛×𝐼𝑛+1×⋯×𝐼𝑁

and 𝑖𝑖 ,…,𝑖𝑛−1 ,𝑗𝑛 ,𝑖𝑛+1 ,…,𝑖𝑁 =
∑

𝑖𝑛
𝑖1 ,…,𝑖𝑁 ⋅ 𝐀𝑗𝑛 ,𝑖𝑛 .

3.2. Degradation model

We consider  ∈ R𝑀×𝑁×𝐵 as a clean HSI with the spatial dimensions
of 𝑀 × 𝑁 and 𝐵 spectral bands. Under the contamination of additive
zero-mean Gaussian noise, the observation model can be expressed as:

 =  + , (1)

where  is the observed HSI and  is the additive Gaussian noise. HSI
denoising is concerned with how to restore the underlying clean HSI 
from the observed noisy HSI  .

Generally, directly estimating the underlying HSI  from the noisy
HSI  is an ill-posed inverse problem. It is necessary to design regu-
larization terms depicting the prior information of HSI for stable de-
noising. Motivated by the spectral correlation of HSI, low-rank prior is
an effective tool to restore the HSI. However, as the spectral dimension
increases, designing traditional low-rank approximation regularization,
such as nuclear norm, to the original HSI is time-consuming. From the
perspective of the linear mixing model, each spectral signature of HSI
(i.e., the tube fiber of ) can be formulated by a linear combination
of a small number of pure spectral endmembers [51]. Thus, the HSI 
can be represented by

 =  ×3 𝐄, (2)

where 𝐄 ∈ R𝐵×𝐾 (𝐾 ≪ 𝐵) is the endmember matrix and  ∈ R𝑀×𝑁×𝐾

is the abundance coefficients. Mathematically, the variable  has the
low-rank property that can capture the spectral correlation of HSI.
Specifically, we can also consider the expression in Eq. (2) as low-rank
subspace decomposition, in which 𝐄 is a spectral basis matrix, and  is
the SRCs. Based on the subspace decomposition, the observation model
in Eq. (1) may be rewritten as:

 =  ×3 𝐄 + . (3)

Therefore, the restoration of HSI is transformed as the estimation of
spectral basis 𝐄 and SRCs .

3.3. Subspace-based HSI denoising framework

By introducing the low-rank prior of HSI in the spectral dimension,
the spectral basis 𝐄 and SRCs  can be alternately updated by the
following regularization model:

argmin
,𝐄

1
2
‖ − ×3 𝐄‖2𝐹 . (4)

However, since the spatial prior is ignored, spectral low-rank prior
alone cannot restore the spatial structure efficiently [23].

To improve the performance of Eq. (4), it is necessary to take into
account the spatial prior of the original HSI. Since the original HSI
 is factorized into two factors, we cannot directly design the spatial
prior to  . Fortunately, with the orthogonal constraint of spectral basis
matrix 𝐄, the SRCs  maintain information of the original HSI  [52].
The advantage of designing the spatial prior on the SRCs  is that it
can reduce the complexity since the dimension of SRCs is much smaller
than that of the original HSI. Incorporating the spatial prior of SRCs
into Eq. (4), the denoising model can be rewritten as:

argmin
,𝐄

1
2
‖ − ×3 𝐄‖2𝐹 + 𝛾𝑅(), 𝑠.𝑡.𝐄𝑇𝐄 = 𝐈, (5)

where 𝑅() represents the regularization term characterizing the spa-
tial prior of SRCs, and 𝛾 is the positive regularization parameter.
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4. Proposed subspace-based guided nonlocal low-rank approxima-
tion method

As the SRCs inherit the spatial prior of the original HSI, spatial-
based denoising regularizations can be employed to constrain the SRCs
in the model Eq. (5), including TV regularization [11,52], BM3D de-
noiser [22], deep denoiser [53], and nonlocal self-similarity [23].
Among these spatial-based regularizations, the NSS which is depicted
by low-rank performs excellent denoising results [54,55]. Moreover,
the effective nonlocal low-rank approximation method with rigorous
convergence theorems was first established in [56], which achieves
state-of-the-art performances in model-based multiplicative noise re-
moval. Therefore, the SNLR framework is formulated as:

arg min
,𝐄,𝐆𝑖

1
2
‖ − ×3 𝐄‖2𝐹 + 𝛾‖‖NL, 𝑠.𝑡.𝐄𝑇𝐄 = 𝐈, (6)

where ‖‖NL =
∑

𝑖(
1
2‖𝑖 − 𝐆𝑖‖

2
𝐹 + 𝑟(𝐆𝑖)), 𝑖 is a operator extracting

he 𝑖th exemplar patch group, 𝐆𝑖 is the low-rank component of 𝑖,
nd 𝑟 is the low-rank approximation function.

.1. The proposed SGNLR model

In this section, we present the proposed SGNLR model by incorpo-
ating the guided information into the SNLR framework in Eq. (6). The
ptimization of model in Eq. (6) can be alternatively updated by the
ollowing two subproblems:
{

𝐄 = argmin𝐄
1
2‖ − ×3 𝐄‖2𝐹 , 𝑠.𝑡.𝐄

𝑇𝐄 = 𝐈,
 = argmin

1
2‖ − ×3 𝐄‖2𝐹 + 𝛾‖‖NL.

(7)

ith the SRCs  fixed, the optimization of 𝐄-subproblem has the
losed-form solution [14,23].

The solution to the -subproblem consists of three steps: (1) search-
ng for nonlocal groups 𝑖; (2) low-rank approximation 𝑟(⋅); (3)
estoring the SRCs. The implementation of the first two steps directly
mpacts the restoration performance of SRCs. However, previous works
ave encountered two main issues. Firstly, these methods search for
imilar blocks directly on , leading to inaccurate identification of
imilar blocks. This problem is exacerbated by the presence of irregular
oises, which obscures spatial information. This issue is illustrated in
ig. 2(a)–(b). The SRCs contain significant irregular noise and lack
patial information, posing a significant challenge in the step of finding
imilar blocks, and ultimately affecting the subsequent steps. Secondly,
ue to the group matching operator, 𝑖 exhibits the low-rank prop-
rty. Therefore, step 2 aims to extract the low-rank component from the
oisy similar group. However, the inaccuracy of finding similar blocks
n the first step, combined with the lack of information available in
he SRCs, makes it challenging to achieve satisfactory results in the
ow-rank approximation step. This deficiency can negatively impact the
erformance of HSI denoising based on SNLR methods.

The main reason for these problems is that most of them treat HSI as
ull-band noisy data and ignore an inconspicuous but real phenomenon
hat there are many HSNRBs in real HSI. Fig. 1 presents three bands
f two real datasets, and we can observe that some bands are heavily
orrupted with noise, and some are apparently high-quality. Previous
ork has not extracted these bands separately, and how to make full
se of them to improve the HSI denoising results is a key issue. To
ddress the deficiencies of SNLR methods and improve its denoising
bility, we propose a novel SGNLR model as follows:

min
,,g ,𝐆𝑖

1
2
‖ − ×3 𝐄‖2𝐹 +

𝛽
2
‖g −g ×3 𝐄g‖

2
𝐹

+ 𝛾‖c‖NL 𝑠.𝑡.𝐄𝑇𝐄 = 𝐈,
(8)

here g is the guided HSNRBs extracting from the noisy HSI  , 𝐄g
nd g are basis matrix and guided SRCs of HSNRBs, respectively.
e definite c = (g,) as the concatenation of two SRCs, and
 ‖ =

∑

( 1‖  − 𝐆 ‖

2 + 𝑟(𝐆 )) and 𝐆 = [𝐆 ,𝐆 ], where 𝐆
5

c NL 𝑖 2 𝑖 c 𝑖 𝐹 𝑖 𝑖 𝑖𝑜 𝑖𝑔 𝑖𝑜
and 𝐆𝑖𝑔 are extracted from 𝑖 and 𝑖g, respectively. Since HSNRBs
are approximately clean data, we can learn the basis matrix 𝐄g from
𝐘g,3 using singular value decomposition (SVD), where 𝐘g,3 denotes the

ode-3 unfolding of 𝑔 .
Compared with the SNLR model in Eq. (6), the proposed SGNLR

model has the following advantages. First, the SGNLR model can im-
prove the precision of searching nonlocal patches. Although the SRCs
of noisy images are of low quality, the SRCs of guided HSNRBs can
provide high-quality spatial structure as shown in Fig. 2(c), which
can be employed to guide the group matching. Second, the low-rank
approximation of nonlocal groups will be more accurate on our SGNLR
model. Since most of the spatial information from the noisy SRCs is
corrupted, we can employ clean SRCs from HSNRBs to guide the low-
rank approximation. This is analogous to low-rank completion, where
the higher the observation ratio, the better the result [57]. Third, our
SGNLR provides a new insight by introducing the guidance information,
which does not increase the model complexity and its computational
cost. Therefore, the proposed SGNLR model is expected to have a strong
ability for noise removal.

4.2. Optimization

Due to the difficulty of optimizing multiple variables directly, the
alternating minimization scheme is designed to solve the proposed
SGNLR model in Eq. (8).

4.2.1. Spectral basis 𝐄 optimization
The subproblem of spectral basis 𝐄 optimization model in Eq. (8) is

defined as:

min
𝐄

1
2
‖ − ×3 𝐄‖2𝐹 , 𝑠.𝑡.𝐄𝑇𝐄 = 𝐈. (9)

Actually, the closed-form solution of 𝐄 - subproblem is achieved by
𝐄 = 𝐔𝐕𝑇 , where 𝐔 and 𝐕 are the left and right singular vectors of
(3)𝐙𝑇

(3), respectively. However, to preserve more detailed information,
e employ iterative refinement during the iteration. Thus, we follow

he strategy proposed in [23] to optimize it.

.2.2. Low-rank approximation 𝐆𝑖
Fixing other variables except 𝐆𝑖, the subproblem of low-rank ap-

roximation 𝐆𝑖 is formulated as:

in
𝐆𝑖

1
2
‖𝑖c −𝐆𝑖‖

2
𝐹 + 𝑟(𝐆𝑖). (10)

here are many denoising methods based on low-rank approximation,
uch as nuclear norm [11], Tucker decomposition [48], and intrin-
ic tensor sparsity regularization [21]. To balance the computation
omplexity and performance, we employ matrix-based WNNM [58] to
stimate the low-rank component 𝐆𝑖.

.2.3. SRCs g update
Although the SRCs g is clean, we still need to iteratively update

t in order to adaptively guide the restoration of the SRCs  and make
hese two SRCs promote each other. The objective function in Eq. (8)
ith respect to g is

in
g

𝛽
2
‖g −g ×3 𝐄g‖

2
𝐹 + 𝛾

∑

𝑖

1
2
‖𝑖c −𝐆𝑖‖

2
𝐹 . (11)

y performing the inverse concatenation −1 and discarding the con-
tant term, the minimization problem is rewritten as:

rgmin
g

𝛽
2
‖g −g ×3 𝐄g‖

2
𝐹 + 𝛾

∑

𝑖

1
2
‖𝑖g −𝐆𝑖𝑔‖

2
𝐹 , (12)

where 𝐆𝑖𝑔 is the low-rank component corresponding to 𝑖g. The g
minimization is a quadratic optimization problem and can be solved by
the following linear system:

(𝛾
∑

𝑖
𝑇

𝑖 𝑖 + 𝛽𝐈)𝐙g,3 = 𝛽𝐄𝑇
g 𝐘g,3 + 𝛾

∑

𝑖
𝑇

𝑖 𝐆𝑖𝑔 , (13)

where 𝑇
𝑖 is the inverse operator of 𝑖. Therefore, 𝑔 is obtained by

fold (𝐙 ).
3 g,3
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4.2.4. SRCs  restoration
Similar to the g - subproblem, the restoration of SRCs  is equiv-

alent to solving the following minimization problem:

argmin


𝛽
2
‖ − ×3 𝐄‖2𝐹 + 𝛾

∑

𝑖

1
2
‖𝑖 −𝐆𝑖𝑜‖

2
𝐹 , (14)

where 𝐆𝑖𝑜 is the low-rank component corresponding to 𝑖. The
losed-form solution is obtained by solving the following linear system:

𝛾
∑

𝑖
𝑇

𝑖 𝑖 + 𝛽𝐈)𝐙(3) = 𝛽𝐄𝑇𝐘(3) + 𝛾
∑

𝑖
𝑇

𝑖 𝐆𝑖𝑜. (15)

hus, we can obtain  = fold3(𝐙(3)).
We summarize the solved algorithm for SGNLR model in Algorithm

. To obtain the HSNRBs 𝑔 , we first sketchy estimate the noise
ntensity of each band using a multiple regression theory-based method
roposed in [51], and then extract the band whose noise intensity is less
han a certain threshold value as the HSNRBs. We initialize these two
RCs as  =  ×3 𝐄𝑇 and g = g ×3 𝐄𝑇

g , where 𝐄 = 𝐔(∶, 1 ∶ 𝐾)
nd 𝐄g = 𝐔g(∶, 1 ∶ 𝑐), 𝐔 and 𝐔𝑔 are the left singular matrices of
(3) and 𝐘g,3, respectively. 𝑐 is the number of features in the guided
RCs, and we set c = 2 to avoid the high computational complexity of
onlocal self-similarity. To compare fairness, we set 𝜇 = 2 and 𝛿 = 0.1
s suggested in [21,23].

. Experimental results

In this section, we conduct both simulated and real experiments to
erify the effectiveness of the proposed SGNLR method. We compare
t against six state-of-the-art denoising approaches based on nonlocal
ethods, namely TDL [19], LLRT [20], KBR [21], FastHyDe [22],
LRTR [59], and NGmeet [23]. For all experiments, we manually

djust the parameters of these methods according to their default
trategy or the rules described in their respective papers to obtain the
est possible results. To facilitate numerical calculations and parameter
djustments, we normalize the pixel values of the entire HSI to the
ange of [0, 1] before conducting the experiments. All experiments are
erformed using MATLAB R2021b, running on an Intel(R) Core(TM)
7-7700 processor with 40 GB of RAM at 3.6 GHz.

Algorithm 1 SGNLR Solver
Input: Noisy HSI  , parameters 𝛽 and 𝛾.
1: Initialize: Global subspace dimension 𝐾, HSNRBs 𝑔 , SRCs  and

𝑔 .
2: for 𝑡 = 1 ∶ 𝑖𝑡𝑒𝑟 do
3: Spectral basis 𝐄 learning via Eq. (9).
4: Low-rank approximation 𝐆𝑖 for all 𝑖 via Eq. (10).
5: SRCs 𝑔 update via Eq. (13).
6: SRCs  restoration via Eq. (15).
7: Dimension adaptation via 𝐾 ← min(𝐾 + 𝜇 ∗ 𝑡, 𝐵).
8: Iterative update via  (𝑡) ←  ×3 𝐄 + 𝛿( − ×3 𝐄).
9: end for
Output: The restored HSI  =  ×3 𝐄.

5.1. Simulated experiments

5.1.1. Experiments setting
We conduct simulated experiments using two publicly available

HSI datasets: the Pavia City Center dataset (PaC), collected by the
Reflection Optical System Imaging Spectrometer (ROSIS-03), and the
Washington DC Mall (WDC) dataset, acquired by the Hyperspectral Dig-
ital Image Acquisition Experiment (HYDICE) sensor. Following previous
works [60], we severally extract a sub-image of size 200 × 200 × 80 for
PaC and 256 × 256 × 191 for WDC. To demonstrate the effectiveness of
our new perspective in introducing guidance information, we follow the
NGmeet method [23] and add Gaussian noise with zero-mean standard
6

variances 10, 30, 50, 100, and 𝑈 [30, 80], respectively. Moreover, to
show that our method can be extended for complex noise removal,
the mixtures of Gaussian noise, impulse noise, and stripe noise are
added to the ground truth. The standard deviation of Gaussian noise
and percentages of impulse noise is uniformly sampled within the range
of 𝑈 [30, 80] and 𝑈 [0, 0.2], respectively. In addition, we select ten bands
and thirty bands in PaC and WDC to add stripe noises, respectively.
All parameters of the comparison methods were manually tuned to the
optimum according to the authors’ code or the recommendations in the
paper. The two hyperparameters of our method are set to 𝛾 = 10−1

and 𝛽 = 103. The global subspace dimension 𝐾 can be estimated by
HySime [51]. Since many bands in the real data are high quality, we
randomly select one-eighth of the bands without noise. It is worth
noting that the test data for all methods is the same, i.e., one-eighth
of the bands in the noisy data  are noise-free. Since most of the
comparison methods are not pre-processed with noise, we also do not
conduct noise preprocessing on FastHyDe for the sake of fairness in the
comparison.

5.1.2. Quantitative comparison
To quantitatively evaluate the spatial and spectral restoration qual-

ity of the denoising results, three measures are chosen: peak signal-
to-noise ratio (PSNR), structural similarity (SSIM), and spectral angle
mapper (SAM). PSNR and SSIM are used to evaluate spatial quality,
while SAM is a spectral-based index. Higher PSNR and SSIM values
and lower SAM values indicate better restoration quality. Table 1 lists
the quantitative results of all comparison methods under different noise
levels on the PaC and WDC datasets. First, we can observe that the per-
formance of subspace-based nonlocal methods is relatively better than
that of global-based nonlocal approaches. The reason for this is that the
global spectral and spatial correlations of HSI are effectively captured
by low-rank subspace decomposition and nonlocal self-similarity, re-
spectively. Second, the performance of TDL and NGmeet is dependent
on the noise level, and they are relatively ineffective when the noise
level is inconsistent in different bands. Third, we can easily observe
that the proposed SGNLR achieves the best denoising performance in
most noise cases. Another interesting observation is that although the
proposed method is based on the framework of NGmeet, the perfor-
mance of our SGNLR has significantly improved. This phenomenon
confirms the effectiveness of our new insight by introducing guidance
information in HSI processing.

5.1.3. Visual comparison
The previous quantitative comparison demonstrates the effective-

ness of our SGNLR method. To provide a more intuitive comparison
of denoising performance between different methods, we present vi-
sual comparisons to further illustrate the superiority of our method.
Figs. 4 and 5 display the denoising and residual results of all com-
parison methods on PaC and WDC datasets, respectively. To facilitate
visual comparison, we enlarge a patch of the restoration image in
the lower left corner. It becomes apparent that TDL does not fully
remove the noise, as evidenced by the visible noise in the enlarged
box. Although LLRT and KBR perform better in removing noise, their
excessive smoothing results in the removal of original image details.
FastHyDe, WLRTR, NGmeet, and our proposed SGNLR method all
effectively eliminate noise and retain image details, making it difficult
to discern significant visual differences among them. To highlight the
advantages of our approach, we present residual images that show the
difference between the original image and the denoised result. The
residual image demonstrates that our SGNLR method performs the best
in minimizing residual artifacts, thereby effectively eliminating noise

while preserving detailed information.
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Fig. 4. Denoising and residual results of all comparison methods on the PaC dataset with bands 53-51-27 as R-G-B under noise level 50. (a) Original. (b) Noisy. (c) TDL. (d)
LLRT. (e) KBR. (f) FastHyDe. (g) WLRTR. (h) NGmeet. (i) SGNLR.

Fig. 5. Denoising and residual results of all comparison methods on the WDC dataset with bands 57-27-17 as R-G-B under noise level 100. (a) Original. (b) Noisy. (c) TDL. (d)
LLRT. (e) KBR. (f) FastHyDe. (g) WLRTR. (h) NGmeet. (i) SGNLR.

Fig. 6. Restoration results of all comparison methods on band 112 of the Indian Pines dataset. (a) Original. (b) TDL. (c) LLRT. (d) KBR. (e) FastHyDe. (f) WLRTR. (g) NGmeet.
(h) SGNLR.

Fig. 7. Restoration results of all comparison methods on band 217 of the Indian Pines dataset. (a) Original. (b) TDL. (c) LLRT. (d) KBR. (e) FastHyDe. (f) WLRTR. (g) NGmeet.
(h) SGNLR.

Fig. 8. Vertical mean DN profile of all comparison methods on band 217 of the Indian Pines dataset. (a) Original. (b) TDL. (c) LLRT. (d) KBR. (e) FastHyDe. (f) WLRTR. (g)
NGmeet. (h) SGNLR.

Fig. 9. Restoration results of all comparison methods on band 152 of the GF-5 Baoqing dataset. (a) Original. (b) TDL. (c) LLRT. (d) KBR. (e) FastHyDe. (f) WLRTR. (g) NGmeet.
(h) SGNLR.
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Table 1
Quantitative comparison of all comparison methods under different noise levels on the PaC and WDC datasets.

Cases Index Noisy TDL FastHyDe KBR LLRT WLRTR NGmeet SGNLR

PaC

10

PSNR 28.13 33.72 42.53 40.36 42.29 41.60 42.70 45.72
SSIM 0.801 0.922 0.991 0.985 0.990 0.989 0.991 0.996
SAM 15.937 10.247 2.912 2.805 3.010 2.801 2.924 2.150

30

PSNR 18.58 31.32 36.42 34.80 36.04 35.86 35.71 40.09
SSIM 0.366 0.899 0.965 0.952 0.962 0.964 0.958 0.984
SAM 34.970 9.910 4.787 4.223 5.360 4.581 6.124 3.284

50

PSNR 14.15 28.82 33.78 31.74 33.39 33.15 32.83 34.99
SSIM 0.188 0.836 0.941 0.908 0.938 0.936 0.925 0.959
SAM 46.759 12.020 6.057 5.286 6.112 5.937 7.959 5.412

100

PSNR 8.13 26.28 30.53 28.45 29.71 29.39 28.09 31.95
SSIM 0.054 0.727 0.886 0.822 0.870 0.861 0.806 0.923
SAM 63.380 13.711 7.817 6.759 7.177 8.617 12.824 6.399

[30,80]

PSNR 13.74 25.59 33.15 30.84 31.41 30.57 27.90 33.37
SSIM 0.194 0.677 0.933 0.889 0.893 0.876 0.784 0.949
SAM 49.960 21.140 6.448 6.368 8.940 11.164 22.181 6.792

Mixed

PSNR 12.17 21.32 24.51 23.35 17.04 16.31 23.44 26.00
SSIM 0.128 0.526 0.800 0.664 0.307 0.280 0.759 0.801
SAM 45.059 20.610 11.200 14.900 31.350 39.020 11.690 13.310

WDC

10

PSNR 28.13 37.28 41.58 40.99 40.47 42.21 42.39 44.70
SSIM 0.782 0.962 0.989 0.988 0.985 0.990 0.991 0.994
SAM 16.244 6.132 3.842 2.863 4.210 3.029 3.326 2.501

30

PSNR 18.59 30.08 37.49 35.12 35.16 37.00 37.90 38.92
SSIM 0.372 0.852 0.973 0.956 0.953 0.970 0.976 0.981
SAM 36.113 12.568 5.114 4.924 6.716 4.657 4.715 4.081

50

PSNR 14.15 27.59 35.10 32.16 33.05 34.31 35.21 36.31
SSIM 0.194 0.773 0.954 0.915 0.926 0.947 0.956 0.967
SAM 48.83 15.229 6.123 6.186 7.471 5.915 5.949 5.355

100

PSNR 8.13 24.82 31.84 28.69 29.68 29.53 31.44 32.52
SSIM 0.059 0.639 0.909 0.819 0.851 0.855 0.904 0.925
SAM 64.74 17.691 7.677 8.392 8.997 9.304 8.400 7.173

[30,80]

PSNR 13.27 25.56 34.28 31.38 30.35 32.25 31.26 34.15
SSIM 0.18 0.671 0.945 0.899 0.852 0.910 0.891 0.957
SAM 52.047 20.973 6.484 6.919 11.130 8.267 12.398 6.841

Mixed

PSNR 11.68 21.26 23.13 22.73 15.89 15.98 22.21 25.87
SSIM 0.122 0.567 0.754 0.718 0.284 0.273 0.674 0.785
SAM 47.370 20.670 15.460 15.970 37.350 41.580 15.960 14.030
5.2. Real data experiments

In this section, we aim to further validate the effectiveness of
our method in real data. To this end, we conduct experiments on
two real HSIs: the AVIRIS Indian Pines dataset1 and the GaoFen-

Baoqing Dataset.2 The AVIRIS Indian Pines dataset, acquired in
992 by the Airborne Visible/Infrared Imaging Spectrometer sensor,
omprises 220 spectral bands with a spatial size of 145 × 145. The
F-5 Baoqing dataset, captured by the Hyperspectral GaoFen-5 satellite
ollection, contains 210 bands. After removing the miss bands and
xtracting a small region. The GF-5 Baoqing sub-image with the size of
00 × 300 × 155 is chosen for experiments. To extract the HSNRBs, we
irst estimate the noise level of each band using the multiple regression
heory-based method and then select the top eighth of the bands with
he lowest noise levels as the guidance data g. That is, the maximum
alue in the one-eighth band with the lowest noise levels is set as the
hreshold value.

Since the ground truth is not available for real datasets, objective
valuation metrics cannot be used to assess the effectiveness of different
ethods. Instead, we select two bands with moderate noise levels to

ompare the performance of different methods. Additionally, we plot
he vertical (column) mean curve of one band to evaluate the denoising
ffect. Qualitative analysis of the denoising results and corresponding
urves allows us to compare the effectiveness of different denoising
ethods.

1 https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
2 http://hipag.whu.edu.cn/resourcesdownload.html
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5.2.1. Results on Indian pines dataset
Figs. 6 and 7 present the denoising results of all comparison meth-

ods on bands 112 and 217 of the Indian Pines dataset, respectively.
From Figs. 6(a) and 7(a), we can find that this dataset is degraded by
mixed Gaussian and impulse noise. The denoising results of LLRT and
KBR are excessively smooth and lose a significant amount of detailed
information. While the results obtained by FastHyDe effectively remove
the noise, they still contain visible streaks. WLRTR, NGmeet, and
our proposed SGNLR method outperform other competing methods by
effectively removing noise while preserving more local details.

Fig. 8 shows the vertical mean profiles of the denoised image of
band 217 in the Indian Pines dataset, where the horizontal and vertical
axes denote the column number and the corresponding mean value of
each column, respectively. It can be seen that TDL maintains the same
curve as the noisy image, indicating that it fails to remove the noise.
The results of LLRT and FastHyDe show some fluctuations due to the
noise. Since KBR blurs the image detail, it obtains a smoother curve.
On the other hand, WLRTR, NGmeet, and our proposed SGNLR achieve
better results, showing neither fluctuations nor excessive smoothness.

5.2.2. Results on GF-5 Baoqing dataset
Figs. 9 and 10 present the bands 152 and 155 before and after

denoising in the GF-5 Baoqing dataset. From Figs. 9 and 10(a), we can
observe that this dataset is mainly degraded by Gaussian noise, impulse
noise, and stripes. Apparently, TDL is not effective in removing noise
in real experiments, which limits its application. Although LLRT can
remove the noise completely, it results in the loss of spatial details.
Compared with other methods, KBR can restore the image in a low-
noise-intensity band, but there is still noise in the high-noise-intensity
band. As shown in the enlarged box of Fig. 10(e)–(g), the denoised

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
http://hipag.whu.edu.cn/resourcesdownload.html
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Fig. 10. Restoration results of all comparison methods on band 155 of the GF-5 Baoqing dataset. (a) Original. (b) TDL. (c) LLRT. (d) KBR. (e) FastHyDe. (f) WLRTR. (g) NGmeet.
(h) SGNLR.
Fig. 11. Vertical mean DN profile of all comparison methods on band 155 of the GF-5 Baoqing dataset. (a) Original. (b) TDL. (c) LLRT. (d) KBR. (e) FastHyDe. (f) WLRTR. (g)
NGmeet. (h) SGNLR.
Fig. 12. Sensitivity analysis of parameters (𝛽, 𝛾) under two different noise levels. (a) Noise level 50. (b) Noise level [30, 80].
Fig. 13. Sensitivity analysis of the Number of HSNRBs under different noise levels. (a) PSNR. (b) SSIM.
results of FastHyDe, WLRTR, and NGmeet still have distinct stripes.
The proposed method removes most of the noise and provides good
denoised results. It is worth noting that our method has an advantage
in detail recovery while ensuring that most of the noise is removed.

The vertical mean DN profiles of all comparison methods for band
155 are shown in Fig. 11. Except for TDL, all other methods diminish
the fluctuations of the noisy image. LLRT and KBR achieve smoother
curves, which can also be reflected in their visual results. FastHyDe
can be seen to still have more pronounced fluctuations. Although
WLRTR and NGmeet eliminate the apparent fluctuations, there are still
some minor fluctuations. The result of our SGNLR is more reasonable
than other methods. In summary, the experimental results on real
9

datasets once again demonstrate the effectiveness of our method and
its competitiveness compared to other methods.

5.3. Discussion

In this section, we will discuss the parameter selection and conver-
gence of the proposed method. Moreover, the sensitivity of the number
of HSNRBs is analyzed. Furthermore, we present the time cost of all
comparison methods on real datasets.

5.3.1. Parameter analysis
There are two regularization parameters in the SGNLR model that

need to be selected in Algorithm 1: 𝛽 and 𝛾. We perform a sensitivity
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Fig. 14. The SRCs of HSNRBs before and after denoising. (a) Before denoising. (b)
After denoising.

analysis on the simulated WDC dataset under noise levels of 50 and [30,
80]. Fig. 12 shows how the PSNR values change with the parameters
𝛽 and 𝛾. We find that the choice of parameters is relatively robust, as
PSNR exhibits a consistent trend for parameter selection at different
noise levels. Our SGNLR method performs relatively well when 𝛽 and 𝛾
are in the range of [103, 104] and [10−2, 10−1], respectively. Therefore,
we set 𝛽 = 103 and 𝛾 = 10−1 in all experiments.

5.3.2. The number of HSNRBs analysis
In our proposed method, HSNRBs are utilized to guide the restora-

tion of SRCs. To evaluate the impact of the number of HSNRBs on the
results, we vary the band ratio (the ratio of the guide band to the total
spectral band) from the set of [1/18, 1/16, 1/14, 1/12, 1/10, 1/8,
1/6, 1/4]. Fig. 13 illustrates the PSNR and SSIM values for different
band ratios on the simulated WDC dataset under varying noise levels. It
can be observed that the restoration performance improves as the band
ratio increases. Empirically, at least 1/8 of the bands in real HSIs are
high-quality, thus we select the 1/8 bands with the least noise intensity
as the HSNRBs. It is important to note that when all bands in HSIs are
degraded by noise, our method will degrade to NGmeet.

To visually show the guided information, we compare the SRCs
of HSNRBs before and after denoising on the simulated WDC dataset
under noise level 𝑈 [30, 80] in Fig. 14. It is easy to see that the SRCs of
HSNRBs have rich spatial information before and after denoising, and
are basically consistent. This also confirms that these coefficients can
guide the whole denoising process well.

5.3.3. Convergence analysis
Since the proposed SGNLR model in Eq. (8) is based on subspace

decomposition, it is a nonconvex optimization problem. Therefore,
it is difficult to theoretically guarantee convergence for nonconvex
frameworks. We use numerical results to demonstrate the convergence.
The PSNR and SSIM value curves with respect to the iteration number
of the SGNLR solver are presented in Fig. 15. It can be seen that, after
a few iterations, the PSNR and SSIM values remain stable for all noise
cases, indicating the strong convergence of Algorithm 1.
10
5.3.4. Computational efficiency
The proposed method is based on the framework of NGmeet but

does not introduce complex prior regularizations, so computational
efficiency is guaranteed. Table 2 lists the time required for all the
methods on real datasets. FastHyDe employs BM3D as the denoiser and
does not iteratively update the spectral basis, so it is computationally
inexpensive. LLRT, KBR, and WLRTR directly incorporate NSS into the
original HSI design, resulting in high processing times. The proposed
SGNLR is consistent with the time cost of NGmeet, but our method
achieves significantly improved denoising results.

6. Conclusion

In this paper, we have provided a new perspective for HSI denoising.
According to our observation, we observed a phenomenon that there
are many HSNRBs in noisy HSI. By making full use of the guidance
information in the HSNRBs, we proposed a new framework named
SGNLR that can also simultaneously explore the global correlation and
spatial NSS of HSI. As the SRCs of HSNRBs share the same spatial
information as those of the clean HSI, we incorporated it into the
SNLR approximation framework to guide HSI restoration. An efficient
alternating minimization algorithm was used to solve the proposed
model with a numerical convergence guarantee. Both simulated and
real experiments verified the effectiveness of the proposed SGNLR
method over some popular nonlocal-based methods. In the future, the
new perspective of incorporating the HSNRBs can be extended to other
HSI processing tasks. In addition, we can inject the complementary
information of HSNRBs into the deep network to extract more refined
spatial features so as to improve the performance of HSI denoising
methods based on deep learning.
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Fig. 15. PSNR and SSIM value curves in terms of the iteration number of SGNLR solver under different noise levels.
Table 2
Computational cost (in seconds) of all comparison methods on real datasets.

TDL LLRT KBR FastHyDe WLRTR NGmeet SGNLR

Indian Pines 11.13 941.50 1908.71 0.11 1721.85 21.65 23.70
GF-5 Baoqing 47.34 2978.56 5037.03 0.54 4729.97 83.63 91.76
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